Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

نویسندگان

  • Amanda C. McCoy
  • Martin J. Duran
  • Abdul-Majeed Azad
  • Sudipta Chattopadhyay
  • Martin A. Abraham
چکیده

The development of robust desulfurizers and new reforming catalysts is a critical path for the use of jet fuels in powering the commercial growth of fuel cell systems for air and military applications. The presence of high concentrations of sulfur-containing organic compounds leads to rapid deactivation of traditional reforming catalysts, and removal of the sulfur components from the fuel through adsorptive methods is not practical for long term operations. The current work describes the use of several ceria-based catalyst compositions that were studied to assess their performance based on the formation of hydrogen and product yield from a fuel consisting of toluene and thiophene. The effect of noble metals, metal oxide additives, and stabilized ceria supports on the performance of the catalyst was studied. The addition of selected components led to higher yields or greater stability; combinations of these additives were not necessarily synergistic. Interestingly, the presence of sulfur in the fuel was shown to enhance the initial activity of catalysts containing rhodium. Analysis in terms of the kinetic rates of reaction and deactivation illustrated the effects of these additives and provided insight into the design of a more highly stable steam reforming catalyst for production of hydrogen from jet fuel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of ceria-supported sulfur tolerant nanocatalysts: Rh-based formulations

The conversion of logistics fuels to hydrogen by steam reforming is attractive but poses great challenge since they contain sulfur up to about 3000 ppm leading to catalyst deactivation due to sulfur poisoning. In this paper, we report the fabrication of nominally doped nanoscale ceriasupported rhodium catalyst matrices for their performance evaluation in sulfur-laden fuel streams. Systematic st...

متن کامل

Effect of Pt on Zn-Free Cu-Al Catalysts for Methanol Steam Reforming to Produce Hydrogen

Steam reforming of methanol can be considered as an attractive reaction aiming at hydrogen production for PEM fuel cells. Although Cu/Al-contained catalysts are considerably evaluated in this reaction, further evaluation is essential to evaluate the impact of some promoters like Pt in order to find a comprehensively optimized catalyst. Pt promoter is employed with different methods in this ...

متن کامل

Autothermal Reforming Catalysts For Use In Fuel Processors For Automotive And Stationary H2 Production

Introduction Reforming (i.e., partial oxidation, steam reforming, or autothermal reforming (ATR)) of infrastructure fuels, such as natural gas, liquefied petroleum gas, gasoline, or diesel, is one approach being investigated for distributed H2 production for use with fuel cell systems being developed for automotive and stationary applications. One area of interest is reforming gasoline either o...

متن کامل

Hydrogen production via steam reforming of LPG on Ni/Zeolite catalysts

Steam reforming is one of the most important processes for producing hydrogen from hydrocarbon fuels such as LPG and has attracted much attention due to its high efficiency and economy. In this study, the LPG steam reforming reaction was investigated on nickel catalysts supported on four various zeolites (H-Y, Na-Y, HZSM5 and Ferrierite). The catalytic tests were performed in a tubular fixed be...

متن کامل

Hydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study

Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007